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ABSTRACT

PROCESSING SYSTEMS OPTIMIZATION THROUGH AUTOMATIC DESIGN AND
REORGANIZATION OF PROGRAM MODULES

J.F. Nunamaker, Jr., W.C. Nylin, Jr., and Benn Konsynski

A methodology is described for the automatic design of a
processing system initially defined in terms of logical pro-
cesses or program modules., Processes and files are grouped and
reorganized in such a way as to produce an optimal design with
respect to a specific target machine. Performance criteria
for the optimal design is defined in terms of transport volume
savings and core memory requirements.

Starting with a graph theoretic representation of the inter-
action between processes (or modules) and files, the methodology
consists of two components: (l) a generator of feasible altetna=
tives and (2) a procedure for reorganization and code generation
for specific groupings. The generator for the feasible alterna-
tives uses an implicit enumeration algorithm to optimize process
groupings in an efficient manner. The objective is to group
processes into modules which minimize the interaction between
modules while still satisfying the logical requirements of the
program and the physical constraints of the hardware. Finally,
after the program modules have been specified, program and file
reorganization will be performed to further optimize the design.
Reorganization includes the combination of similar data passes
on the same file to minimize transport volume -and the merging
of loops to enable elimination of code and of intermediate
data files.

The code generator will then accept the optimal program
design and produce an optimized source language program for
the target machine. Consequently, not only can an optimal
design for the processing system be generated; but due to
reorganization techniques, the resultant modules (defined
from specific process groupings) may approach the computational
efficiency expected of an integrated program.
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1. INTRODUCTION

L ] .
It is recognized that perhaps the single most important problem

which faces a computer user is that of conversion of programs to
another machine. This is true even for programs written in "machine
independent", high-~level source languages. Changes in the system
COnfiguration; e.g., hardware, operating system, or file structure,
may have altered the operating environment significantly so that the
programs no longer take advantage of the‘strength of the configuration,

For whatever reasons that make the conversion necessary, such as
the replacement of an obsolete machine or the requirement to run the
pfogfam on additional machines, the situation is applicable to many
users. It is also recognized that many users have considered auto-
matic conversion of computer programs with techniqués such as emula=-
tion and simulation. However, very few users have seriously attacked
the problem of the optimal reorganization and design of the program
when moving it from one machine to another. |

Many users are of the opinion that anything less than 100%
automatic conversion is not worth considering; however, it can be
stated emphatically that less-than-complete conversion tools are
useful and the redesign and reorganization are necessary for effi-
cient operation of the resulting program modules.

The transferability problem touches on all aspects of software
design; specific methodology from decompiling, graph models of pro=
grams, operations research search techniques, and problem statement
languages are used to form an approach to the problem.

8




NUNAMAKER, Program Module Design 9

I1. METHODOLOGY

L

What is needed is a methodology for converting, redesigning, and
reorganizing programs from one machine to another as a result of
stated performance criteria.

This paper discusses a software system for the design and re-
organization of computer programs, and a methodology is described
rﬁg;;phe automatic design of a processing system initially defined
in terms of logical processes or program modules. Processes and
files are grouped and reorganized in such a way as to produce an
optimal design with respect to a specific target machine. Perform-
ancde criteria for the optimal design are defined in terms of transport
volume savings, core memory requirements, and input/output requirements.

Transport volume of a system is a measure of performance that
is related to total processing time. Processing time is a non-
decreasing function of transport volume; therefore, it is desirable
to decrease the transport volume of a set of program modules., It
was shown by Nunamaker [1,2] that there exists a class of process
groupings which result in a reduction of transport volume when two
Or more processes are grouped.' Using a slmple case as an example,
the transport volume is reduced when two processes are grouped if
the output of one is the input to the other process. As a result
of the grouping of the processes into a composite program module,
the core requirement will be increased and the input/output require-
ments of the system may;be affected.

In this paper the assumption is made that we are starting with
a well-defined problem, and that the set of processes can be deséribed
in terms of a directed graph. In addition, we know other information
such as frequency, volumes, etc.

Building on the graph theory representation of the interaction
between processes (or mocdules) and files, the methodology consists of
two components: (1) a generator of feasible alternatives and (2) a
procedure for reorganization and code generation for specific groupings.
The generator for the feasible alternatives uses an implicit enumera-
tion algorithm to generate alternative groupings in an efficient man=
ner. The objective is to group processes into modules which minimize
the interaction between modules_while still satisfying the logical
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requirements of the program and the physical constraints of the hard-
ware. Finally, after the program modules have been specified, program
and file reorganization will be performed to further optimize the
design. Reorganization includes the combination of similar data passes
on the same file to minimize transport volume and the merging of loops
to enable elimination of code and intermediate data files.

The program Module Generator presents a very large set of feasible

program modules for the target machines; it is the task of the selec~-

tion algorithm and the reorganizer to construct a reasonably godd set
of program modules. The code generator then accepts the optimal
program design and creates the optimized physical code for the target
machine. Thus, the Program Module Generator chooses from ahong all
conceivable combinations of processes for program modules and selects
the "best" design after considerable interaction with the program
reorganizer.

Consequently, not only can an optimal design for the processing

system be generated, but due to recrganization techniques, the re=-

sultant modules (defined from specific process groupings) may approach
the computational cfficiency expected of an integrated program.

An overview of the mcthodology for the automatic design and re-
organization of program modules is shown in Figure 1. The specific
subject of this paper begins with the assumption that a Problem
Definition exists and is shown below the dotted line in Figure 1.

The problem definition, generation, and translation into a problem
statement is the subject of another paper ([Z].

IIT. DEFINITIONSK

TGRS G R .

A programming system, PE = (PR,F,T,E), is defined as a set of
processes (PR), files (F), the control flow of the files(T), and the
relationships of the set of processes and files (E). These defini=
tions are extensions of the work of Langefors (3] and Briggs [4].

pr = Process--2 well-defined task representing a pass over one

or more data files; where PR=(pr1,.pr2, ey prn).

£ - Pile--The data input or output of a process; where

F=(f1, fé, ey fk)‘

4
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T - Control Flow Matrix--The control flow precedence rclationship
of the programming system.
‘ tiﬁ = 1 if control flow can pass directly from fi to fj.
tij = 0 otherwise.
E - Incidence Matrix--Processes and files.
eij =1 if fj is én input to pr,.
eij = -1 if f_j is an output of pr, .

eij = 0 if there is no incidence betweer f. and pr,.

The control flow of a network is described by T, and the data
relationship of the processes and files in a network is described
by E. }

From the Incidence Matrix we can define the concept of transpbrt

- volume. Transport volume is one component of the performance criteria
which are used to evaluate alternative program module design. Per-
formance criteria for program module design is a function of the fol-
lowing compcnents: (1) processing time, (2) transport volume, (3) core
size, and (4) the number and type of input/output units required.

Let Vj be the volume of file fj; Ri' the number of logical inputs
and outputs of pr, i and mpj, the multiplicity of file transport for fj.
Thus mpj represents the number of times fj is an input or_output of a
set of processes; cmy represents the core memory required by Pry.

oQoi =t lelj! H J’..=l,2,ooo'no

mp., = ﬁ e, . 7 ‘312 ve ko
pj L l lj| ] X ’
The transport volume for £, is:

j
tv., = mMp. °* V..
g = TPy " Yy :

The transport volume for the set of data files is:

v = f;’ £V,
V3

i=1
Let pr, be represented by a [:: and £, by a (:) .

9
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6

The Incidence Matrix (E) and the associated incidence graph for a

programning system of six processes and ten files is shown in Figure 2.

o L

...G/

o

.

B0

~©

N Files
] " 1 " ‘
a b c d e e f, f d h, ziv,Fqﬁi
A | -1 1 0 1 0 0 0 0 0 0f 3130
B 0 -1 0 0 1 0 0 0 0 el 2110
5 C 0 0 -1 0 0 1 0 0 0 o| 2|15
o D 0 0 0 -1 0 0 1 0 0 1| 3120
g E 0 0 0 -1 -1 0 1 0 0| 3110
g F 0 0 0 0 -1 =1 1 0| 3110
< "
§ mp 1 2 1 2 2 2 2 2 1 1
v.130 10 20 50 10 10 10 20 30 50
tvj 30 20 200 100 20 20 - 20 40 30 50
Figure 2. Incidence Graph and Matrix E for a programming systen

of 6 processes and 10 files.

This example is also used later in Section VII.
We now must define additional matrices needed for the grouping

iERiC‘ procedure.

10




NUNAMAKER, Program Module Design . 7

) | The E matrix of processes and files is used to generate the data

flow Precedence Matrix of processes P. Note that a distinction is
made between the control flow T of the programming system and the
precedence relationship of the processes with respect to data flow.

P - Precedence Matrix: Processes

pij = 1 if pry is a direct precedent of prj.
p:.. = 0 if otherwise.
1)
P can be reconstructed from E as follows: ,
pij = 1 if and only if J £ 3 €:p = -1 and ejz = 1,

The Precedence Matrix (P) of processes for the example of Figure 2

is shown in Figure 3.

A C D E F ‘
, alo o 0 0 o0 0

B[1 0 0 0 o0 o

clo o0 o o0 o0 o

pl1 0o o o o o

E 1 1 0 o0 o'

F/|O 0 0 1 1 o0

Figure 3. Precedence Matrix of Processes P.

The R, R*, and G matrices are generated for the entire set of
Processes.

R - Reachability Matrix: Processes

The R matrix is used to check precedence violations in the

grouping procedure ;
R =pV Ptv....v p971

where g is the index of the nilpotent matrix P: i.e., when P9 = 0,
rij = 1 if pry has any precedence relationship with prj.

rij = 0 otherwise.

11
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The Reachability Matrix (R) of Processes for the example of
Figure 2 is shown in Figure 4.

Figure 4. Reachability Matrix of Processes R.

R* - Partial Reachability Matrix: Processes

The R* matrix is used to calculate the G Matrix.
R* = p2 v p? v,,,.v p¥°¢

r*ij = 1 if 23 has a higher (2 or more) order precedence

with prj.

r*ij = 0 otherwise.

The Partial Reachability Matrix (R*) of Processes for the example
of Figure 2 is shown in Figure 5. '

Figure 5. Partial Reachability Matrix of Drocesses R¥.

12
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G - Feasible Process Pairs Grouping Matrix: Processes

If g5 i3 = -1, there exists hlgher (2 or more) order relationships
between pry and prj; and pri'cannot be combined with prj. If gij = 0,
there is no precedence ordering; and pry can be combined with prj.
This indicates a feasible but not necessarily profitable grouping. If
gij = 1, there is either a direct precedence relationship, and pry can
and should be combined with prJ since this indicates a feasible and
profitable grouping; or there is an immediate reduction in logical

input/output requirements when pri_and prj are grouped.

= =] j * * . = =
gij 1l if r i3 or r 3i 1l or i=j,
= * = * =2 ' = = . AN ¢
gij 0 if r i3 0 and ¥ 34 0 and pij 0 and pji 0; except
when (pi2=l and pj£=l) or (pzi=l and pzj=1).
= * = * = ; = =
9 5 1 if r i 0 and r 31 0 and [(p.. 1) or (pji 1) or

(p. T =1 and p. z-l) or (pz =] and Poi =1)] .

pry has a first order precedence or succedence rela-
. tlonshlp with pr, and prj

The Feasible Process Pairs Grouping Matrix (G) for the example
of Figure 2 is shown in Tigure 6.

A B C D E F
-1 1 0 1 -1 -1

-1 1 1 1 -1 1

M 3 O QO W P
T o
=
]
=
o
(-
!
-

-1 -1 -1 1 1 =1

L]

Figure 6. Feasible Process Pairs Grouping Matrix G.

A list of all feasible pairs for grouping of processes is con~ .
structed from the G Matrix and passed to the generator of alternative
' groupings.

g

13
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It is known that by grouping processes into a composite process
called a program module, the multiple input and output of files can be
reduced. A program module PMiis created by combining and reorganizing

processes Pr. 4, Pr; s seeey pr, .. Let Lo be the source language; Ll'

1 2 k

the in;ermediate language; and L2, the target langvage. Nota: that a
situation m-y exist in which a single language could serve as LO’ Lqs
and L2.

Define procedure RG which maps processes in language L0 into re-
organized modules in language Ll; RG performs the following tasks:
1. Conversion of the individual processes from L0 to Ll if L0 # Ll.
2. Transformation of the processes written in Ll into a syntactically

and logically correct module in Ly

3. Reorganization of the module.
Thus, one can define a program module PM. using RG.

PM. = RG(Pr, , s++ssy Pr; ) is a feasible program module if
i iy i - :
pr. € PR,1<j<k, and PM, satisfies all the constraints for a valid

J
subprogram in language L for the target machine. Thus, a feasible
program module must satisfy the core memory and logical constraints of
the program,

M.={pr. ,pr- ¢ oses ey pPr
i i i, i

feasible program module.

k} is a feasible grouping if PM, is a
§ = {Ml, Moy voeey Mq}'is a cover for the programming system PS if:
i) M. l<i<q is a feasible grouping.
i) MU My U...U M = PR, ,
1ii) MinMj = § for 1 # § ¥ jeq, j<i, igq.
Note that PM; = RG(pr,) must be a feasible module for lc<ign for
a cover for P8 to exist. We can now define the set of all possible
sovers (A) for pS. (i.e., A = {§]6 is a cover of PS}.)

14
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IV.V PROCESS GROUPING CONCEPT

In generating an efficient design, it is nccessary to decrease
the transport volume (total number of characters read in and written
out of main memory) in order to reduce the processing time. If file
volumes remain constant, in order to decrease the transport volume,
the multiplicity (the number of times a file is input and output) of
file transport must be decreased. After the Program Modules are
Specified, the files are consolidated for the purpo of reducing the
number of input/output files required and for better utilization of
storage in auxiliary memory. Process grouping is shown to.corfespond
to a grouping of rows of the Incidence Matrix, and file consolidation
is shown to correspond to a grouping of coluwns.

Program module design is concerned with the reduction of pro-
cessing time and can be summarized by the two methods by which the
processing time can be reduced. The generator of alternatives detex=
mines whlch opgrations (Processes) will be grouped 1nto Program Modules:

1. Group Processes which eliminate the writing out and the reading
in of a file. ‘Consider the example in which the output of one
process is the input to another process, as shown in Flgurc 7.

OO0

Figure 7. The output £  if pry is the input ‘to pry.

The transport volume of £ is eliminated when pr, and pr, are grouped
as shown in F! :re 8.

Figure 8. Grouping of pry and pry of Pigure 7.

15
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2. Group Processes which require the same file as shown in Figure 9,

A {

—~©
O

Figure 9. PX, and Prp read a common input file fc'

The transport volume is reduced when pr, and pry are grouped since F.
is read only once as shown in Figure 10.

0

Figure 10. Grouping of PX, and prp of Figure 9.

It may be profitable also to group £, and £, as shown in Figure 1l,

(::)——— A,B | 4&!’

Figure 11. Grouping of fa and £, of Figure 10.

The objective is to reduce total tranSport'vélume and thus total
processing time. |

The concept of process grouping is illustrated with the example
from section VIT of the paper and the Incidence Matrix and graph for
the example is shown in Figure 2. The transport volume TV for the
example is 350 units, the core memory required is 30 units, and the
maximum input/output requirement for any process is 3. The crueial
items in determining which processes to group into modules are the
transport volume and main memory size. It is desirable to produce
modules (subject to the memory constraint) minimizing the transport
volume for the programming system. . '

16
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Consider as an altérnafive.design'cumbining Prar Prp, and P
into one program module and Prns PYpy and pfF into a second program
module. The resulting transport volume TV is 270, the core memory
will be no larger than 55 units, and the maximum number of input/
output processes for each program module has increased to 5. This
alternative design is shown in Figure 12.

a c d e' e" g h zi cmy
MyJ 0O 0 -1 -1 -1 1 1[5 |40
My | -1 -1 1 1 1 -0 o0}s5 |55
mp,| 11 2 2 2 1 1 -4
vyf30 20 50 10 10 30 50
tvy[30 20 200 20 20 30 50

Figure 12. Grouping Processes of Figure 2 into two Program Modules.

The transport volume for the example of Figure 2 has been reduced
from 350 units to 270 units, the core requirement has increased from
30 units to 55 units for program module size and the maximum input/
output requirement has increased from 3 to 5.

Several aésumptiOﬁs are made in the graphical representation of
the processes and files. Control flow over a file is assumed to exist
for any process. Multiple data passes over an input and output file
as illustrated in Figure 13 are shown as follows in Figure 14 for the
computation of transport volume. .

‘ L




Figure 13. Multiiple data passes over an input file and output file.

O ON

Figure 14. Graphical representation of the examples of Figure 13 for
the purpose of computing transport volume.

In other words, an element of file "a" is read and an element of
file "b" is written. Control then reads the next element ¢f "a" and.
writes the next element of "b". Therefore, cycles within a process
are not showh in the Incidence Graph, but are assumed to exist in the
Incidence Graph and are shown in the control flow graph.

In addition, the situation may exist in which control flow actually
passes completely from file "a" to file "b"., This is the case when the
entire'file "a" is read before file "b" is written. For example, the
. process may involve a sort on file "a", or a compléte read of file "a"
may be required to compute various sums that are dependent on the con-
tent of file "a". |

Both cases are represented as having the same incidence matrix
‘for purposes of computing the transport volume. The T or control flow
matrix reflects occurrences of multiple data passes over a file.

The P matrix and E matrix are the same for both cases and the T
matrix is different. This iz illustratad as follows in Figure 15,

It can be noted that although the transport volume for épéeifia
files has been eliminated by the grouping, storage (in main memory)
for the information contained in those files is still necessary. It
is the purpose of rearganization to automatically restructure the
combined processes towards the reduction of the number of loops over
that information and thus possibly elim%ﬁaté the need to maintain it

18
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abc AB a b c¢
al01l1l A|O1 Al=1l 0 1
bl|0 0O B|0OO B l1 -1 0
clil100 ‘
A——.@—.Br—‘@
__'_I‘__ P E
abec A B ~a b ¢
al01l1lod0 AlO1l Ai~-1 0 1
b|0O0O0 Bi0O B 1 -1 .0
c|100 .

?igure 15. Illustration of the usefulness of the T Matrix.

between two data passes. This can be ascomplished by restructuring

the loops (consecutive data passes) in an attempt to provide only one
loop over the original data file. Consequently, only a specific record
of that information file may need to exist for each pass through the
merged loop. That is, the information in that record could be computed
and used by the same pass, and no longer be necessary upon completion
of that pass. Such is the case in the example presénted in Figure 2
and described in a later section in which the combination and reorgani~-
zation of processes E and F ailow for the elimination of the Customer
Transaction File £".

A record of the Warehouse Transaction File g was used to compute
each record in the Customer Transaction File £". Similarly, a record
of £" was used to compute each record in the Customer Order File e’
and the Customer Payment File e". By grouping and reorganizing two

19
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processes, E and I, the individual records for e' and e" can be com-
puted from a record of £" (which was just computed from a record of ¢).
Consequently, only the storage for a record of f" is necessary in
comparison to storage for the entire file. In addition, it may be
possible to elirinate the record of f" and compute those for e' and e"
directly from g. Such a procedure requires the following subtasks:

1. Combining processes into logically and syntactically correct
modules, f

2. Comprehensive control and data flow analysis.

3. Restructuring the module to merge data passes (or loops).

4, Flimination of unnecessary files (or data).

V. PROCESS GROUPING DETERMINATION
———-_“

The problem of assigning the various processes to modules is a
complex combinatorial problem complicated by the fact that savings
from reorganization cannot be predetermined. However, prediction of
savings in transport volume which result from process groupings can
be accomplished.

The G Matrix relates the profitable binary groupings} i.e., those
in which a savings in transport volume is incurred.

An interaction matrix is created to reflect the transport volume
savings encountered in a binary grouping of processes.. This savings
matrix or S matrix is computed as follows:

. 1
“ m 1l if ey = 1 and esy = l. 7
Sij = Sji = ;E Vi 2 if (eik = =1 and ejk,= l)or(eik = 1 and e:.,k = ~1)
k=1 ,O otherwise.

=
Where k is the file subscript of the Incidence Matrix.

Tf the binary grouping is immediately infeasible, we maintain the
potential savings we would encounter if the grouping is made at a later
time.

The TV savings which result from é.grouping of n processes is:
then reflected in the sum of the savings of binary grov-ings of the n
processes. (NOTE: There are n(g-lj binary combinations of processas,)

Thus, our § matrix is presented in Figure 16 for the example problem
given in Figure 2.

20




0 20 20 0 - 40
0 0 0 20 40 -

Figure 16. Matrix of transport savings for pairw15e groupings
for the example of Figure 2.

TVS is the Transport Volume Savings function for any grouping M.

TVS (M) = :> Sij

prieMr ?rjeM
i<j

Thus} from above:
T™VS (DEF) = SDE + sEF + sDF 0 + 40 + 20 = 60
S

TVS (ABD) = S, + Sy + §, = 20 + 0+ 100 = 120

Note that this short-cut method for computing Transport Volume
Savings (TVS) is based on the assumption that a file is input to no
more than two processes., If a file is input to three or more processes,
the Transport Volume Savings must be computed directly from the Inci-
dence Graph of the proposed design.

Transport Volume Savings is supplemented by gains occurring as a
result of reorganization.

The objective is to minimize transport volume subject to core
constraints and feasibkle grouping consideration. This may be stated
as follows:

If C(Mi) is the core requirement for module RG(Mi) and CT is the
core constraint,

(M ) <CT , 1l <izgq

It is important to note the interaction effects encountered are
of a non-convex nature:; i.e., there exist local optima which are not
necessarily global optima; thus, to guarantee a global optimum, the
entire solution space must be considered.

<1
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The grouping procedure was first formulated as a Quadratic
Assignment Algorithm [5] in order to implicitly truncdate unprofitable
solutions from the solution space and facilitate specd of convergence
to a good solution. However, optimality cannot bé guarantced for
this problem as we formulated it using the Quadratic Assignment
Algorithm. The process grouping procedure described in the next
section is formulated as a straightforward enumeration scheme. The
number of feasible desiqns is not too large for problems of 50

processes or less whe., -e memory and precedence relationships are
used as constraints on Module size.

A. GENERATION OF FEASIBLE PROCESS GROUPINGS TO FORM MODULES

The G matrix is used to create a listing of binary groupings.
The binary pairs (i,j) of the upper triangular portion of the matrix
are selected if 954 = 1l and it is not true‘that 32 3 Pyq and r,. = 1.

%3
The consequence of allowing the (i,j) pair into the pair list given the
above condition is the generation of infeasible groupings. Considexr

. the following precedence graph of processes as shown in Figure 17,

A - C

/

Figure 17. Precedence graph of processes-

We observe that p,p = 1 and rp, = 1 hold; thus, AC is eliminated frém
the pair list; otherwise {AC,B} appears ta be a feasible design, which
it is not. By eliminating the pair {AC} from the feasible list of
pairs, we create only feasible designs. (NOTE: {ABC} is still a
feasible grouping.)
. " Once a list of feasible pairs is created, feasible modules of
size 3, ...., n, are generated by the following algorithm.
A list Y' of feasible groups of size k+l1 is generated using the
list Y of groups of size k by selecting an element of ¥ and comparing it
with every element of the list of pairs and adding a process to thé

22
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grouping if that process is in’'a palr with. Aan element of the group and -
no output of any process of the element of Y is input, or reachablec as
input, to the process to be added to the grouping. This means that if
Yy € ¥ and pr, ¢ vy then y U pr, is a feasible grouping if ¥ prj €y 3
gij = 1 and for all pr, €Y if ¥ pr, ¢ v and 2#i then Pyy = 1 implies
Xoy # 1 and Pox = 1l implies riy # 1.

This is to say that a process is added to the grouping if there
is no output from a process of the group which ;s indirect inéut to
the candidate process; i.e., there is no process noﬁ in the grouping

which accepts output from the group and generates input to the candi-
date process. An example is shown in Figure 18 of the problems that

A<}

Figure 18. Tllustration of Potential Grouping Problem.

can arise in the grouping procedure. If {A B C} is a grouping, then
we see that the grouping {An B C D} violates our rules for acceptance
of the candidate D for pBE-l and rp ~l and yet E ¢ {A B C} and E#D.
Thus {A B C D} is not a feasible grouplng. We can see, however, that
{ABCE} and {A B C D E} are feasible groupings.

From the list of feasible pairs, all feasible triples are gene-
rated. Two pairs are grouped if they have one process in common. From
valid pairs and triples, designs of size 4, ...., n, are generated.

This procedure generates modules from size 2 up to n where n is
the number of elements of PR. The result is a 1list of all possible

feasmble process groupings M, with the exception of the individual
processes. Thus, in the example we call this listing 8, and

23
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The set Y™} of feasible modules N
ig initially empty. J

Select y ¢ "

Create process groupings Ym*ﬁ
of size m+l from groupings ¥

of size m and the lis: of
feasible process pairs.

yes
211 Select a pair of
. , . r
pQ%, prj pairs | processes Pflo P 3
considered for y? from the list of l
' feasible process pa.rs
) X
If only one process pr, ¢
of the process pair ke 3 ¢ yes —<<: i n
. belongs to the m J Pry ¢ Y
size grouping y,
form a m+l size
grouping y'. Add
pr ¢ y.
ket no N
Process grouping y' +
is a possible program
module.

If y' is already a member of

Y™1 then create another s
program module.
Check core constraint for >

program module y'.

Is there a precedence
violation with respect to the
m size process grouping y and
the candidate process pr,?

. I1f a precedence violatio
exists, then reject the
grouping y', where y'=sy U pry.

Add the process grouping y' — —— |
to the set of feasible gyl o g+l vyl —
program modules Y™*!,

Figure 19. Generation of Feasible Process Groupings To Form Modules.
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The set of feasible gystems designs
m+l
]

is initially empty.

Create groupings 0m+l
of size m+l from groupings >
m

e 1

of size m.

yes

’//~\\ - Sclect proeessing

all b ¢ 8 :
considered grouping (module) (=
m b from 8
. for 62

I1f candidate module b has
a process in common with 9
reject the candidate grouping

o™ and b
have a

common
process?

6™ U b,

Module grouping 0m+l is a
possible programming systems 6
design.

m+l - Om U b

1f em+l

um+l then create another grouping

is already a member of

of modules to form a new systems
desigp.

Is there a precedence violation
with respect to the m size module

grouping 6™ and the candidate
module b? If a precedcence
violation exists, then reject the

groﬁping 6m+l, where 6m+l = Gm U b.

e . , 1 R B AN —
Add the module grouping g™t o » o
to the set of feasible systems am+1 + am+1 v o™ 1L

designs o™i, . -

Figure 20, Generation of Alternative System Designs
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{AB}
{aD}

(EF}
{Agc}

{DEF}
. {A§CD}

{ABéDEFU

T

the list of all feasible groupings M is the union of the set B8 and the
set PR or M = B8 U PR. See the flow chart of Figure 19.

B. GENERATION OF ALTERNATIVE SYSTEM DESIGNS

* A similar procedure is used to select all feasible combinations
of modules (process grouéings) that form a cover for the programming
system PS. Note that all elements of B satisfy the system's core
constraint so modules may be combined freely so long as no modules

. . in the cover have any common processes. The core constraint of a
system is satisfied as long as the core requirement of the largest
. program module in the design does not exceed the constraint.
The proce.lure seeks to generate sets (o™hm=1, ...., 8, where
ol is a set that contains all possible combinations of m modules and 1
s <n is the maximum number of modules that can be combined. Clear;yo.i
o

m+1 m

= B. Proceeding by inductive definition, « is generated from o .

To generate am+1, for each element 6" ¢ am, o™ is combined with any

element b ¢ B for which b has no process in common with the modules

of 8™, Then, 6m+1 = 6™ U b becomes an element of am+l. This procedure

is shown in Figure 20.
Further, as above, there must be only direct precedence between
. the set 6™ and the candidate module b; i.e., the case as illustrated
in Figure 21 does not occur.

em

Module‘
a

Figure 21. 1Illegal Grcuping Situation,
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Thus, for ekample, if
(BC,AD} € a? and {EF} ¢ B and {BC,AD} N {EF} = ¢
Then {BC,AD,EF} €& a?*! = a?,
Further, if N
(ABC} € a! and {EF} ¢ 8 and {ABC} N {EF} = ¢
hen {ABC,EF} ¢ ot
Note in the first case a cover of PS is formed.

After all combinations have been enumerated, a cover § is formed

from each»combination o™ ¢ o as follows: We let ek € ak = {Ml, coeeoy
Mk}, where M. € 8 and feasible module M, = {pril, coe et prin}. My
‘ i

container_processes.

Then the residual processes can be defined as:

n.
b' = {prilpr e [PR- UL ()1} thus 6 0% U b,

J=1

In other words, a feasible design is any element em of any<ocm
combined with all ungrouped processes as incdividual modules., For
example, 8 = {ABCD, E, I} is a feasible design for the programming
system diagrammed in Figure 2.

C. 7TrANSPORT VOLUME SAVINGS CALCULATION
The transport volume savings- for any design can be calculated by

" examining each-module of the design as stated earlier and the savings
for the design is the sum of the savings for any modules. Thus, if
§ = {Ml, Moy weeny Mq}, then the transport veclume savings for ¢ is

VS (§) =) A — ~ny
i=] prj € Mi’ pr, € Mi
i<k
The optimal design with respect to transport volume savings can be
designated as follows:

g

jk
§ . = MAX ( TVS(S) )

opt
é

R7
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The core requirements for a design can be designated as the maximum

requirements for any moddle of the design; thus, it is
. Maximum [ C(Ml), C(Mz), ....,VC(Mq)] .

The list of designs are then sorted in ascending order by core and
descending order by transport volume savings and the x best designs
(highest transpcrt volume savings) are saved for each range of core;
i.e., top ten for rahge 20K~30K bytes of memory, top ten for range
31K~-40K bytes of memory, etc. The core constraint may be as a result
of a partition size or an arbitrary constraint on module size. The

number of designs (x) to save for each range of core memory is arbitrary.

VI. COMBINING PROCESSES

The combining of processes in L, jinto program modules in L, re-

. quires the translation of those processes into L. This translation
can be made either bhefore or after the processes are cémbined. How=
ever, if the translation is made first, then the procedures for com-
bining program modules are over the same language as the reorganiza-
tion procedures. This would enable new processes to be addead to 4
already reorganized modules. procedures necessary for combining modules
include those to resolve identifier conflicts, interface the modules
with respect to external files, and perform structural modifications
necessary to produce the desired syntactically and logically correct

" module.

Nylin [6] has discussed techniques which have been used for the
implementation of these procedures., In addition, other techniques
can be used to take advantage of any commonality which may exist
between the modules being combined. Yershov [7,8] described techniques
to efficiently utilize storage by allowing certain variables to use the
same memory location. Similarly, algorithms exist for detecting common

. data storage areas and to eliminate redundant procedure definitions [6].

Much of the control flow information necessary for reorganization
can be accomplished with existing techniques such as analysis using
Boolean connectivity matrices first described by Prosser (91, or the
interval method described by Cocke and Schwartz (10] and Allen (1l].
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Techniques for additional control flow information which can be used in
reorganization are described by Nylin [6]. Existing techniques [12, 13,
14) can be used to compute variable "usage" information utilizing the
data gathered in the control flow analysis.

The control flow and data flow infcrmation procedures are ncces=
sary to locate loops (data passes) which may be candidates to be merged.
Of particular interest are loop pairs in which one loop is always
executed the same number of times as a specific branch of the other,
Thus, onc loop computes the control parameters for the other. If this
can be determined and if additional data flow information allows the
loops to be merged, one of the loops can be eliminated and its body
moved into the other loop. This procedure may include the replacement
of an induction variable as well as the redefinition of certain program
variables necessary as a result of merging the loops. It should be
noted that the complexity of the control flow within either loop is not
a factor in the ability to merge them. '

Once the loops are merged, it may be possible to apply subsamp-
tion techniques [6,13] to eliminate unnecessary stores into variables.
That is, the definition of a particular variable (which could be the
internal representation of a data file) may be able to replace subse~
quent occurrences of that variable. Thus, due to the merging of two
loops (data passes), it is no longer necessary to maintain information
which is only utilized by a specific pass through the merged loop.
Hence, an intermediate file (used for communication between the loops)
can be eliminated. '

Once a decision Es made as to which processes are to ora a module,
they must be integrated by some automatic procedure. This combining
of specific proucesses to form a program module that can be executed on
the target machine involves sceveral steps. First, the processes nust
be able to be represented in an intermediate language that has the
following attrihutes:

1. An ability to measure the memory required to implement the
processes on the target machine.

2. The ability to automatically analyze the grouped processes and
perform reorganization procedures on their loop and file structure.

3. The ability to map the grouped processes into the desired programs
on the target machine preserving their recrganized structure.
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It should be noted that the intermediate language (Problem Statement
Language) could be either the original language or the desired languago
for the target machine. It may even be desirable to compile the final
grouping in the intermediate language to produce object code directly.
This could be especially advantageous if the processes arc described
by a high-level problem statement language. That is, there exists no
need for any other level of documentation since new modifications to
the system would be made at the problem statement level. Thus, when
changes are made to the existing processes or new processes are added,
the final modular programming system can be automatically regenerated.

Clearly, this is necessary to guarantee that the system remains
optimal and that no errors are introduced by adding code to a module
consisting of multiple processes.

Oncce the processes are represented in the intermediate language
Ll’ they must be combined into a logically and syntactically correct
program module for Ll’ The program modules (processes represcnted in
Ll) can be automatically combined to form larger modules in Ly Thesc
multipass modules could be automatically analyzed; and, if possible,
reorganized to combine multiple passes over the same file. In addi=-
tion, in some cases the file could also be eliminated. The elimination
of such files ﬁot only increases the efficiency of the resultant module
but it decreases the memory it requires [6].

In addition to the directed graph representation of the set of
programs, the following information is assumed to be available for
module reorganization,

'+ Process documentation 4. File usage 7
2. Source deck or list of processes 5. Input and output test data
3. Operating instructions 6. Frequency of process cycles

VII. EXAMPLE

L

The example below is a system of processes which creates a
warehouse shipping schedule, | .

The input is considered to be a tfansaction file containing
Receiving Reports, Customer Orders, and Customer Payments, The
transactions are divided into a receiving file and a customer
transaction file.

The receiving reports are used to update the inventory on hand
file, while the customer orders and payments are separated and a
payment summary produced.

The Incidence Matrix for this example is shown in Figure 2,
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PROCESSES

- Shipping Schedule Generator

~ Order file sorting for Scheduler

Customer Payment Summary Generator

~ Inventory Update :

- Separate Customer Payments from Customer Orders

- Separate Receiving Report from Customer Transactions

mERoOQx>
1

FILES

- Shipping Schedule Report

- Customer orders sorted by item
- Customer Payment Summary
Updated Inventory '
Customer Orders

Customer Payments

Receiving Report

Customer Transaction

Warchouse Transaction

- 0ld Inventory Master

HE OO TR
1

=]

L]

. ‘The files e', é", and f' are described below:

RECEIVING REPORT (f') CUSTOMER ORDER (e')
Columns Data Columns Data
1 - 2 'rV! l - 2 'cg!
3 - 7 Vendor Number 3 - 7 Customer Number
g - 27 Vendor Name g8 - 27 Customer Name
28 ~ 47 Vendor Address 28 - 47 Customer Address
48 - 55 Value of Goods 48 - 55 value of Goods
56 - 60 Component Number 56 = 6C Component Number
6l -~ 65 Quantity Received 61 - 65 Quantity Recceived
66 - 71 Date Received 66 - 71 Delivery Date
72 - 77 -Blank 72 = 77 Order Number
78 - 79 Warehouse
CUSTOMER PAYMENT (e")
Columns Data
. 1 - 2 'Cp'
3 - 1 Customer Number
8 - 27 Customer Name
. 28 - 47 Customer Address
48 - 55 Amount Paid
56 = 71 Blank
72 = 77 Order Number

The P, R*, R, and C Matrices for the above example are given in Figures
3,4,5, and 6 respectively.
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The transport volume savings Matrix S is given in Figure 16; thus, the
total transport volume for this example is 350 units. The procedure
detailed in Figure 18 was executed for CT=50 with the resultant module
groupingss; .

H]

My {a,D}

M, = (B,C,E,F}

C(Ml) = 50 < 50

C(Mz) 45 < 50

With the organizing completed, the final transport volume was 170.
This resulted in a savings of 180 uniis and only 40 units more than
the absolute minimum of 130 units. If the core constraint is relaxed,
the minimum transpoct volume is obtained when all processes are
grouped into a single module. _

To illustrate combining processes into modules utilizing reorgani-
zation techniques, cousicder processes D, E, and F. Modules representing
each of these processes can be represented by the following COBOL pro-
cedure divisions.

PROCESS D ”
OPEN INPUT OLD-INVENTORY~-FILE, RECEIVING=-REPORT-FILE,
OUTPUT UPDATE=-INVENTORY-FILRE.,
REWIND RECEIVING=-REPORT-FILE,
LABEL. READ RECEIVING-REPORT-FILE AT END GO TO CLOSER.
PERFORM UPDATE INVENTORY-FILE.
GO TO LABEL.
CLOSER. CLOSE ALL FILES.

PROCESS E '

OPEN INPUT CUSTOMER-TRANSACTION-FILE, OUTPUT CUSTOMER-PAYMENT~
FILE, CUSTOMER-ORDER~FILE.,

REWIND CUSTOMER~TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OF CUSTOMIP-TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER~
PAYMENT-REC FROM CUSTOMER-TRANSACTION ELSE WRITE CUSTOMLER~
ORDER-REC I"'ROM CUSTOMER~TRANSACTION.
GO TO LABEL.

CLOSER. CLOSE ALL FILES,
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PROCESS F

OPEN INPUT WAREHOUSE~TRANSACTION-FILE, OUTPUT RECEIVING-REPORT-
FILE, CUSTOMER-TRANSACTION-FILE

. REWIND WAREHOUSE-TRANSACTION-FILE

LADEL. KEAD WAREHNOUSE~TRANSACTION~FILF AT END GO TO CLOSER.
IF CODE OF WARGHOUSE-TRANSACTION EQUAL 'R' THEN WRITE RECEIVING-
REPORT-REC FROM WAREHOUSE~TRANSACTION ELSE WRITE CUSTOMER-
TRANSACTION-REC FROM WAREHOUSE~TRANSACTION: GO TO LABEL.

CLOC3ER. CLOSLE ALL FILES.

By combining and reorganizing Processes E and F into one module,
the following integrated module is generated.

MODULE E-F

OPEN INPUT WAREHOUSE~-TRANSACTION-FILE, OUTPUT RECEIVING-REPORT=
FILE, CUSTOMER-ORDER~FILE, CUSTOMER-~-PAYMENT-FILL.
REWIND WAREHOUSF-TRANSACTION-FILE.
LABEL. READ WAREHOUSE~TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OF WARELOUSE~-TRANSACTION EQUAT, 'R' THEN WRITE RECEIVING-
REPORT-REC FROM WAREHOUSE-TRANSACTION ELSE IF CODE OF WARECHOUSE-
) TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-PAYMENT-REC FROM
WAREHOUSE~-TRANSACTION.
WRITE CUSTOMER-ORDER-REC FROM WAREHOUSE-TRANSACTION.
) GO TO LABEL.
CLOSER, CLOSE ALL FILES.

Thus, the processes ave able to be combined with the elimination
'of the Customer Transaction File (file £").

Similarly, Processes D and F can be combined and reorganized to
eliminate the Receiving Report File (file £'). The resultant module

is as follows:

MODULE B_F
OéEN INPUT WARLHOQUSE-TRANSACTION-FILE, OLD=INVENTORY-FILE,

OUTPUT CUSTOMER-TRANSACTION~-FILE, OLD-INVENTORY~-FILE.

REWIND WAREHOUSE-TRANSACTION~FILE.

LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO0 CLOSER.
IF CODE OF WAREHOUSE=-TRANSACTION EQUAL 'R' THEN UPDATE
INVENTORY~FILE ELSE WRITE CUSTOMER=TRANSACTION~REC FROM
WAREHOUSE=-TRANSACTION. GO TO LAB!.L.

. CLOSER., CLOSE ALL FILES.

The ability to combine Processes D and F (eliminating file £')
and E and F (eliminating file £") does not guarantee that both files
can be eliminated by grouping Processes D, E, and F., That i8, certain
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program variable dependencies existing between Processes D and E may
prohibit the reorganization of the total grouping. However, if such
dependencies do not exist, then Processes D, E, and F may be combined
and reorganized to produce the resultant module.

MODULE D_E_F

OPEN INPUT WAREHOUSE-TRANSACTION-FILE, OLD~INVENTORY-FILE,
OUTPUT OLD-INVENTORY-FILE, CUSTOMER-ORDER-FILE, CUSTOMER=-
PAYMENT-FILE.
REWIND WAREHOUSE-TRANSACTION-FILE.
LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'R' THEN UPDATE-INVENTORY-
FILE ELSE ‘
IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-
PAYMENT-REC FROM WAREHOUSE-TRANSACTION ELSE
WRITE CUSTOMER-ORDER-REC FROM WAREHOUSE~TRANSACTION. GO TO LABEL.
CLOSER. CLOSE ALL FILES.
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VIII. CONCLUSIONS

A methodology is described for the automatic design of a processing
system initially defined in terms of logical processes or program modules.
Processes and files are grouped and reorganized in such a way as to
produce an optimal design with respect to a specific target machine.
Performance criteria for the optimal design is defined in terms of
transport volume savings and core memory requirements.

Starting with a graph theoretic representation of the interaction
between processes (or modules) and files, the methodology consists of
two components: (1) a generator of feasible alternatives and (2) a
procedure for reorganization and code generation for specific groupings.
The generator for the feasible alternatives uses an implicit enumeration
algorithm to optimize process groupings in an efficient manner. Tae
cbjective is to group processes into modules which minimize the inter-~
action between modules while still satisfying the logical requirements
of the program and the physical constraints of the hardware. Finally;
after the program modules have heen ¢nucified, program and file reorgani-
zation will be performed to further owntimize the design, Reorganization
includes the combination of simslar data passes on the same file to
minimize transport volume and the merging of loops to enable elimination
of code and of intermediate data f£il: °,

The code generator will then aceent tae optimal program design and
produce an optimized source language program for the target machine.
Consequently, not only can an optimal design for the processing system
be generated; but due to reorganization techniques, the resultant modules
(defined from specific process groupings) may approach the computational
efficiency expected of an integrated program.

Although an automatic reorganizer has not been developed foxr COBOL,
one has been implemented for Pilot (a subset of Neliac) on a C.D.C.6500
at Purdue University. This language (Pilot) could represent the inter~
mediate language Ll into which processes written in COBOL could be
translated before they are combined and reorganized.

Another way in which this methodology could be used is to select
designs that are optimal with respect to a particular pricing scheme.

For example, the program design which may be oexecuted the most efficiently
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(with respect to transport volume) on a specific configuration could
require main memory that would be disadvantageocus to the uscr accordi.g
to a particular pricing scheme that penalizes the user for larger
memory requirements. By generating designs for various memory con-
straints, such alternative designs are available.

The methodology described in this paper could be used to break
up programs into modules or overlays and adds a new dimension to
program scheduling since we can now address the following queStion:
"What is the optimal size of a prgram modﬁle?"
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